ТШ

Generic Decoding of Restricted Errors

<u>Sebastian Bitzer</u>¹, Alessio Pavoni², Violetta Weger¹, Paolo Santini², Marco Baldi², Antonia Wachter-Zeh¹

¹Technical University of Munich ²Università Politecnica delle Marche

June 26, 2023

Tur Uhrenturm

▲圖 ▷ ▲ 콜 ▷ ▲ 콜 ▷

Outline

The Restricted Syndrome Decoding Problem

Information Set Decoding

The Representation Technique

Analysis of a Specific Instance

Restricted Syndrome Decoding Problem (R-SDP)

Given: parity-check matrix $H \in \mathbb{F}_p^{(n-k) \times n}$, syndrome $s \in \mathbb{F}_p^{n-k}$, weight t, $g \in \mathbb{F}_p$ of order z and $\mathbb{E} = \{g^0, \dots, g^{z-1}\} \subset \mathbb{F}_p^*$. Find: error $a \in (\mathbb{E} \cup \{0\})^n$ such that $H a \mathbb{E} = a$ and $\mathrm{ut}(a) = t$.

 $\label{eq:Find:error} {\bf Find:} \ \ {\bf error} \ {\boldsymbol e} \in (\mathbb{E} \cup \{0\})^n \ {\rm such \ that} \ {\boldsymbol H} {\boldsymbol e}^{{\scriptscriptstyle\mathsf{T}}} = {\boldsymbol s} \ {\rm and} \ {\rm wt}({\boldsymbol e}) = t.$

Restricted Syndrome Decoding Problem (R-SDP)

Given: parity-check matrix $H \in \mathbb{F}_p^{(n-k) \times n}$, syndrome $s \in \mathbb{F}_p^{n-k}$, weight t, $g \in \mathbb{F}_p$ of order z and $\mathbb{E} = \{g^0, \dots, g^{z-1}\} \subset \mathbb{F}_p^*$. Find: error $e \in (\mathbb{E} \cup \{0\})^n$ such that $He^{\mathsf{T}} = s$ and wt(e) = t.

• NP-hard, not only for z = p - 1

Restricted Syndrome Decoding Problem (R-SDP)

Given: parity-check matrix $\boldsymbol{H} \in \mathbb{F}_p^{(n-k) \times n}$, syndrome $\boldsymbol{s} \in \mathbb{F}_p^{n-k}$, weight t, $g \in \mathbb{F}_p$ of order z and $\mathbb{E} = \{g^0, \dots, g^{z-1}\} \subset \mathbb{F}_p^*$. Find: error $\boldsymbol{e} \in (\mathbb{E} \cup \{0\})^n$ such that $\boldsymbol{H}\boldsymbol{e}^{\mathsf{T}} = \boldsymbol{s}$ and wt $(\boldsymbol{e}) = t$.

- NP-hard, not only for z = p 1
- · Restriction of error guarantees unique solution for increased weight

< 回 > < 注 > < 三 >

Restricted Syndrome Decoding Problem (R-SDP)

Given: parity-check matrix $\boldsymbol{H} \in \mathbb{F}_p^{(n-k) \times n}$, syndrome $\boldsymbol{s} \in \mathbb{F}_p^{n-k}$, weight t, $g \in \mathbb{F}_p$ of order z and $\mathbb{E} = \{g^0, \dots, g^{z-1}\} \subset \mathbb{F}_p^*$. Find: error $\boldsymbol{e} \in (\mathbb{E} \cup \{0\})^n$ such that $\boldsymbol{H}\boldsymbol{e}^{\mathsf{T}} = \boldsymbol{s}$ and wt $(\boldsymbol{e}) = t$.

- NP-hard, not only for z = p 1
- · Restriction of error guarantees unique solution for increased weight
- · Recent proposals use R-SDP to achieve compact sizes, e.g.,

Baldi, M., et al. (2023). Zero knowledge protocols and signatures from the restricted syndrome decoding problem. ePrint

< 回 > < 三 > < 三 >

Restricted Syndrome Decoding Problem (R-SDP)

Given: parity-check matrix $\boldsymbol{H} \in \mathbb{F}_p^{(n-k) \times n}$, syndrome $\boldsymbol{s} \in \mathbb{F}_p^{n-k}$, weight t, $g \in \mathbb{F}_p$ of order z and $\mathbb{E} = \{g^0, \dots, g^{z-1}\} \subset \mathbb{F}_p^*$. Find: error $\boldsymbol{e} \in (\mathbb{E} \cup \{0\})^n$ such that $\boldsymbol{H}\boldsymbol{e}^{\mathsf{T}} = \boldsymbol{s}$ and wt $(\boldsymbol{e}) = t$.

- NP-hard, not only for z = p 1
- · Restriction of error guarantees unique solution for increased weight
- · Recent proposals use R-SDP to achieve compact sizes, e.g.,
 - Baldi, M., et al. (2023). Zero knowledge protocols and signatures from the restricted syndrome decoding problem. ePrint

Due to suboptimal solvers or due to hardness of problem?

< 回 > < 三 > < 三 >

Restricted Syndrome Decoding Problem (R-SDP)

Given: parity-check matrix $\boldsymbol{H} \in \mathbb{F}_p^{(n-k) \times n}$, syndrome $\boldsymbol{s} \in \mathbb{F}_p^{n-k}$, weight t, $g \in \mathbb{F}_p$ of order z and $\mathbb{E} = \{g^0, \dots, g^{z-1}\} \subset \mathbb{F}_p^*$. Find: error $\boldsymbol{e} \in (\mathbb{E} \cup \{0\})^n$ such that $\boldsymbol{H}\boldsymbol{e}^{\mathsf{T}} = \boldsymbol{s}$ and wt $(\boldsymbol{e}) = t$.

- NP-hard, not only for z = p 1
- · Restriction of error guarantees unique solution for increased weight
- · Recent proposals use R-SDP to achieve compact sizes, e.g.,
 - Baldi, M., et al. (2023). Zero knowledge protocols and signatures from the restricted syndrome decoding problem. ePrint

Due to suboptimal solvers or due to hardness of problem?

Improved solvers using the representation technique¹

¹Howgrave-Graham, N., & Joux, A. (2010). New generic algorithms for hard knapsacks. *Eurocrypt* Sebastian Bitzer (TUM)

▲圖 ▷ ▲ 콜 ▷ ▲ 콜 ▷

1. Random permutation

Sebastian Bitzer (TUM)

- 1. Random permutation
- 2. Quasi-systematic form²

²Finiasz, M., & Sendrier, N. (2009). Security bounds for the design of code-based cryptosystems. *Asiacrypt* Sebastian Bitzer (TUM)

- 1. Random permutation
- 2. Quasi-systematic form²
- 3. Enumerate e_1

²Finiasz, M., & Sendrier, N. (2009). Security bounds for the design of code-based cryptosystems. *Asiacrypt* Sebastian Bitzer (TUM)

- 1. Random permutation
- 2. Quasi-systematic form²
- 3. Enumerate e_1
- 4. Check corresponding e_2

²Finiasz, M., & Sendrier, N. (2009). Security bounds for the design of code-based cryptosystems. *Asiacrypt* Sebastian Bitzer (TUM)

- 1. Random permutation
- 2. Quasi-systematic form²
- 3. Enumerate e_1
- 4. Check corresponding e_2

$$\Rightarrow cost = \frac{enumeration cost}{success probability}$$

²Finiasz, M., & Sendrier, N. (2009). Security bounds for the design of code-based cryptosystems. *Asiacrypt* Sebastian Bitzer (TUM)

• IP • • E • • E •

A Meet-in-the-Middle Strategy

Sebastian Bitzer (TUM)

• IP > < E > < E >

A Meet-in-the-Middle Strategy

• Left-right split of e_1

A Meet-in-the-Middle Strategy

< □ > < □ > < 亘 >

• Enumerate x_1, x_2

A Meet-in-the-Middle Strategy

▲ 伊 ト ▲ 三 ト ▲ 三 ト

- _
- Enumerate x_1, x_2
- · Collisions solve small instance

The Representation Technique

< ∰ > < ≣ > < ≣ >

Sebastian Bitzer (TUM)

The Representation Technique

< **⊡** > < ≣ > < ≣ >

The Representation Technique

• Multiple representations

< **⊡** > < ≣ > < ≣ >

The Representation Technique

- Multiple representations
- Enumerate only fraction

▲ 御 ▶ ▲ 注 ▶ ▲ 注 ♪

The Representation Technique

- Multiple representations
- Enumerate only fraction

Search space for x_1, x_2 ?

The Search Space for $\boldsymbol{x}_1, \, \boldsymbol{x}_2$

³Howgrave-Graham, N., & Joux, A. (2010). New generic algorithms for hard knapsacks. *Eurocrypt* Sebastian Bitzer (TUM)

- Split support³
- Overlaps⁴ to 0 for even z

³Howgrave-Graham, N., & Joux, A. (2010). New generic algorithms for hard knapsacks. *Eurocrypt* ⁴Becker, A., Coron, J.-S., & Joux, A. (2011). Improved generic algorithms for hard knapsacks. *Eurocrypt* Sebastian Bitzer (TUM)

- Split support³
- Overlaps⁴ to 0 for even z
- Additional overlaps to $\ensuremath{\mathbb{E}}$

³Howgrave-Graham, N., & Joux, A. (2010). New generic algorithms for hard knapsacks. *Eurocrypt* ⁴Becker, A., Coron, J.-S., & Joux, A. (2011). Improved generic algorithms for hard knapsacks. *Eurocrypt* Sebastian Bitzer (TUM)

- Split support³
- Overlaps⁴ to 0 for even z
- Additional overlaps to $\ensuremath{\mathbb{E}}$
- " $\mathbb{E} + \mathbb{E} = \mathbb{E}$ "-representations

³Howgrave-Graham, N., & Joux, A. (2010). New generic algorithms for hard knapsacks. *Eurocrypt* ⁴Becker, A., Coron, J.-S., & Joux, A. (2011). Improved generic algorithms for hard knapsacks. *Eurocrypt* Sebastian Bitzer (TUM)

- Split support³
- Overlaps⁴ to 0 for even z
- Additional overlaps to $\ensuremath{\mathbb{E}}$
- " $\mathbb{E} + \mathbb{E} = \mathbb{E}$ "-representations

Performance highly dependent on structure of $\ensuremath{\mathbb{E}}$

³Howgrave-Graham, N., & Joux, A. (2010). New generic algorithms for hard knapsacks. *Eurocrypt* ⁴Becker, A., Coron, J.-S., & Joux, A. (2011). Improved generic algorithms for hard knapsacks. *Eurocrypt* Sebastian Bitzer (TUM)

< < > < < ><
< < > < < >

⁵Thiers, J.-P., & Freudenberger, J. (2021). Codes over Eisenstein integers for the Niederreiter cryptosystem. *ICCE* Sebastian Bitzer (TUM)

< < > < < ><
< < > < < >

⁵Thiers, J.-P., & Freudenberger, J. (2021). Codes over Eisenstein integers for the Niederreiter cryptosystem. *ICCE* Sebastian Bitzer (TUM)

< < > < < ><
< < > < < >

⁵Thiers, J.-P., & Freudenberger, J. (2021). Codes over Eisenstein integers for the Niederreiter cryptosystem. *ICCE* Sebastian Bitzer (TUM)

ТШ

⁵Thiers, J.-P., & Freudenberger, J. (2021). Codes over Eisenstein integers for the Niederreiter cryptosystem. *ICCE* Sebastian Bitzer (TUM)

⁵Thiers, J.-P., & Freudenberger, J. (2021). Codes over Eisenstein integers for the Niederreiter cryptosystem. *ICCE* Sebastian Bitzer (TUM)

z = 6: Many Symmetries⁵

⁵Thiers, J.-P., & Freudenberger, J. (2021). Codes over Eisenstein integers for the Niederreiter cryptosystem. *ICCE* Sebastian Bitzer (TUM)

<⊡> <≣> <≣

Overview of Results

+ < = > < = >

Conclusion

Summary

- Restricted decoding problem
- Representation technique for R-SDP
- Improvement for $z \in \{2, 4, 6\}$

+ < = > < = >

Conclusion

ТШ

Summary

- Restricted decoding problem
- Representation technique for R-SDP
- Improvement for $z \in \{2, 4, 6\}$

Open Questions

- Further combinatorial tricks
- Algebraic attacks
- Secure McEliece-like constructions

<⊡> <≣> <≣>

ТЛП

Conclusion

Summary

- Restricted decoding problem
- Representation technique for R-SDP
- Improvement for $z \in \{2, 4, 6\}$

Open Questions

- Further combinatorial tricks
- Algebraic attacks
- Secure McEliece-like constructions

CROSS

<⊡> <≣> <≣>

ПΠ

Conclusion

Summary

- Restricted decoding problem
- Representation technique for R-SDP
- Improvement for $z \in \{2, 4, 6\}$

Open Questions

- Further combinatorial tricks
- Algebraic attacks
- Secure McEliece-like constructions

CROSS https://cross-crypto.com

Thank you! Questions?

⁶Baldi, M., Chiaraluce, F., & Santini, P. (2021). Code-based signatures without trapdoors through restricted vectors. *Cryptology ePrint Archive*

Sebastian Bitzer (TUM)

▲ 御 ▶ ▲ 注 ▶ ▲ 注 ♪

<日・< 注・< 注)

z = 4: Gaussian Integers⁷

ПΠ

⁷Freudenberger, J., & Thiers, J.-P. (2021). A new class of q-ary codes for the McEliece cryptosystem. *Cryptography* Sebastian Bitzer (TUM)

z = 13: Few Symmetries⁸

⁸Baldi, M., et al. (2023). Zero knowledge protocols and signatures from the restricted syndrome decoding problem. *ePrint* Sebastian Bitzer (TUM) 13