

## HQC Beyond the BSC – Towards Error Structure-Aware Decoding

Marco Baldi, Sebastian Bitzer, Paolo Santini, Antonia Wachter-Zeh

Technical University of Munich Università Politecnica delle Marche

ITG AIT



### Post-Quantum Cryptography





### Post-Quantum Cryptography





### Hamming Quasi-Cyclic (HQC)





Aguilar-Melchor, C., et al. (2017). Hamming quasi-cyclic (HQC). *NIST PQC* 

Aguilar-Melchor, C., et al. (2018). Efficient encryption from random quasi-cyclic codes. IEEE T-IT



### Hamming Quasi-Cyclic (HQC)





Aguilar-Melchor, C., et al. (2017). Hamming quasi-cyclic (HQC). NIST PQC

Aguilar-Melchor, C., et al. (2018). Efficient encryption from random quasi-cyclic codes. IEEE T-IT



### Hamming Quasi-Cyclic (HQC)



Aguilar-Melchor, C., et al. (2017). Hamming quasi-cyclic (HQC). NIST PQC

Aguilar-Melchor, C., et al. (2018). Efficient encryption from random quasi-cyclic codes. IEEE T-IT

- Based on hardness of decoding random quasi-cyclic codes
- On hidden code structure
- Precise DFR analysis



#### < 回 > < 注 > < 三 >

### Hamming Quasi-Cyclic (HQC)



energytion schemes. Porch TEM running for standardizt

Aguilar-Melchor, C., et al. (2017). Hamming quasi-cyclic (HQC). NIST PQC

Aguilar-Melchor, C., et al. (2018). Efficient encryption from random guasi-cyclic codes. IEEE T-IT

- Hamming Quasi Cyclic (HQC) ۲ Based on hardness of decoding random guasi-cyclic codes
- ۲ No hidden code structure
- Precise DFR analysis

### HQC in a Nutshell







### HQC in a Nutshell

Alice



### < E HQC in a Nutshell Alice Bob $\boldsymbol{u}_1, \boldsymbol{u}_2 \stackrel{\$}{\leftarrow} \mathbb{F}_2[x]/(x^n - 1) \text{ of wt } w_u$ (h, s) $c \leftarrow C.\mathsf{ENC}(m)$ $s \leftarrow u_1 + hu_2$ $oldsymbol{r}_1,oldsymbol{r}_2,oldsymbol{r}_3 \xleftarrow{\ensuremath{\mathbb{F}}} \mathbb{F}_2[x]/(x^n$ – 1) of wt $w_r$ $(t_1,t_2)$ $(t_1, t_2) \leftarrow (c + sr_2 + r_3, r_1 + hr_2)$

### HQC in a Nutshell Alice Bob $\boldsymbol{u}_1, \boldsymbol{u}_2 \stackrel{\$}{\leftarrow} \mathbb{F}_2[x]/(x^n - 1) \text{ of wt } w_u$ $(\boldsymbol{h}, \boldsymbol{s})$ $s \leftarrow u_1 + hu_2$ $c \leftarrow C.ENC(m)$ $oldsymbol{r}_1, oldsymbol{r}_2, oldsymbol{r}_3 \stackrel{\$}{\leftarrow} \mathbb{F}_2[x]/(x^n-1) ext{ of wt } w_r$ $(t_1,t_2)$ $(t_1, t_2) \leftarrow (c + sr_2 + r_3, r_1 + hr_2)$ $\hat{m} \leftarrow C.\mathsf{DEC}(t_1 - t_2 u_2)$

1



$$\mathcal{C}$$
 needs to decode  $t_1 - t_2 u_2 = c + \underbrace{u_1 r_2 + u_2 r_1 + r_3}_{\text{error } e}$ 

### A First Look at the Error



- P(|e| = w) difficult for  $e = u_1r_2 + u_2r_1 + r_3$
- $\rho = P(e_i = 1)$  simple

### A First Look at the Error

- P(|e| = w) difficult for  $e = u_1r_2 + u_2r_1 + r_3$
- $\rho = P(e_i = 1)$  simple

#### BSC Approximation

Under the independence assumption,

$$P(|\boldsymbol{e}| = w) \approx {n \choose w} \rho^w (1 - \rho)^{n-w}.$$



▲ 伊 ト ▲ 三 ト ▲ 三 ト

## < = > < ≡ > < ≡ >

### A First Look at the Error



•  $\rho = P(e_i = 1)$  simple

#### BSC Approximation

Under the independence assumption,

$$P(|\boldsymbol{e}| = w) \approx {n \choose w} \rho^w (1-\rho)^{n-w}.$$



#### < ∰ > < ≣ > < ≣ )

### A First Look at the Error



- P(|e| = w) difficult for  $e = u_1r_2 + u_2r_1 + r_3$
- $\rho = P(e_i = 1)$  simple

#### BSC Approximation

Under the independence assumption,

$$P(|\boldsymbol{e}| = w) \approx {\binom{n}{w}} \rho^w (1-\rho)^{n-w}.$$



#### Seems conservative but not precise!

#### < **5** > < 2 > < 2 >

### A Closer Look at the Error



• Consider  $a = u \cdot r = \sum_{\ell \in \text{supp}(u)} x^{\ell} \cdot r(x)$ 



#### · @ · · = · · = · TIM

### A Closer Look at the Error

- Consider  $a = u \cdot r = \sum_{\ell \in \text{supp}(u)} x^{\ell} \cdot r(x)$
- $b_i = #$  ones added in *i*-th position



### A Closer Look at the Error

- Consider  $a = u \cdot r = \sum_{\ell \in \text{supp}(u)} x^{\ell} \cdot r(x)$
- $b_i = #$  ones added in *i*-th position
- $a_i = b_i \mod 2$
- $\sum_i b_i = |\boldsymbol{u}| \cdot |\boldsymbol{r}|$



#### < ∰ > < ≣ > < ≣ )

### A Closer Look at the Error

- Consider  $a = u \cdot r = \sum_{\ell \in \text{supp}(u)} x^{\ell} \cdot r(x)$
- $b_i$  = # ones added in *i*-th position
- $a_i = b_i \mod 2$
- $\sum_i b_i = |\boldsymbol{u}| \cdot |\boldsymbol{r}|$

#### **Proposed Approximation**

Assume  $b_0, \ldots, b_{n-1}$  indep. hypergeometric, let  $a_i = b_i \mod 2$ :

$$P(|\boldsymbol{u}\cdot\boldsymbol{r}| = w) \approx P\left(\sum_{i} a_{i} \mid \sum_{i} b_{i} = |\boldsymbol{u}| \cdot |\boldsymbol{r}|\right).$$



#### < ∰ > < ≣ > < ≣ )

### A Closer Look at the Error

- Consider  $a = u \cdot r = \sum_{\ell \in \text{supp}(u)} x^{\ell} \cdot r(x)$
- $b_i$  = # ones added in *i*-th position
- $a_i = b_i \mod 2$
- $\sum_i b_i = |\boldsymbol{u}| \cdot |\boldsymbol{r}|$

#### **Proposed Approximation**

Assume  $b_0, \ldots, b_{n-1}$  indep. hypergeometric, let  $a_i = b_i \mod 2$ :

$$P(|\boldsymbol{u} \cdot \boldsymbol{r}| = w) \approx P\left(\sum_{i} a_{i} \mid \sum_{i} b_{i} = |\boldsymbol{u}| \cdot |\boldsymbol{r}|\right).$$





#### Encoder

- 1. Encode outer RS code
- 2. Encode inner RM code



- 1. Decode inner RM code
- 2. Decode outer RS code





## outer RS code

0

- 1. Decode inner RM code
- 2. Decode outer RS code





1

0

outer RS code

- 1. Decode inner RM code
- 2. Decode outer RS code



#### Encoder

- 1. Encode outer RS code
- 2. Encode inner RM code



- 1. Decode inner RM code
- 2. Decode outer RS code





### outer RS code

Simple DFR analysis under independence assumption 🗸





#### Simple DFR analysis under independence assumption ✓ Modified analysis for arbitrary error weight distribution ✓





#### So much effort for such a small improvement?

《日》 《 문 》 《 문 》

### Beyond the BSC



plausible for BSC



### Beyond the BSC



plausible for BSC for proposed model



### Beyond the BSC



plausible for BSC for proposed model



 $e = u_1 r_2 + u_2 r_1 + r_3$ 

### Beyond the BSC



plausible for BSC for proposed model



with known  $oldsymbol{u}_1,oldsymbol{u}_2$ 

#### <⊡> < ≣ > < ≣ >

### Beyond the BSC

ТШ

plausible for BSC for proposed model



#### **GV-like Bound**

There exist codes of length

$$n \le \lambda + 2w_u \log_2\left(\frac{n \cdot e}{w_u}\right) + 6w_r \log_2\left(\frac{n \cdot e}{2w_r}\right) + \log_2(w_r)$$

that can guarantee correct decryption.

 $oldsymbol{e}$  =  $oldsymbol{u}_1 oldsymbol{r}_2 + oldsymbol{u}_2 oldsymbol{r}_1 + oldsymbol{r}_3$ with known  $oldsymbol{u}_1, oldsymbol{u}_2$ 

### Beyond the BSC

plausible for BSC for proposed model



#### GV-like Bound

#### There exist codes of length

$$n \le \lambda + 2w_u \log_2\left(\frac{n \cdot e}{w_u}\right) + 6w_r \log_2\left(\frac{n \cdot e}{2w_r}\right) + \log_2\left(w_r\right)$$

|     | length | error model | decoder    |
|-----|--------|-------------|------------|
| HQC | 17669  | BSC         | multistage |

 $oldsymbol{e}$  =  $oldsymbol{u}_1oldsymbol{r}_2+oldsymbol{u}_2oldsymbol{r}_1+oldsymbol{r}_3$ with known  $oldsymbol{u}_1,oldsymbol{u}_2$ 

#### • = • = • • = • **TLM**

### Beyond the BSC

plausible for BSC for proposed model



#### $e = u_1 r_2 + u_2 r_1 + r_3$ with known $u_1, u_2$

#### GV-like Bound

#### There exist codes of length

$$n \le \lambda + 2w_u \log_2\left(\frac{n \cdot e}{w_u}\right) + 6w_r \log_2\left(\frac{n \cdot e}{2w_r}\right) + \log_2(w_r)$$

|     | length       | error model | decoder    |
|-----|--------------|-------------|------------|
| HQC | 17669        | BSC         | multistage |
| SPB | $\geq 13438$ | BSC         | ML         |

#### • = • = • • = • **TLM**

### Beyond the BSC

plausible for BSC for proposed model



#### $oldsymbol{e}$ = $oldsymbol{u}_1oldsymbol{r}_2+oldsymbol{u}_2oldsymbol{r}_1+oldsymbol{r}_3$ with known $oldsymbol{u}_1,oldsymbol{u}_2$

#### GV-like Bound

-

#### There exist codes of length

$$n \le \lambda + 2w_u \log_2\left(\frac{n \cdot e}{w_u}\right) + 6w_r \log_2\left(\frac{n \cdot e}{2w_r}\right) + \log_2(w_r)$$

|     | length       | error model | decoder    |
|-----|--------------|-------------|------------|
| HQC | 17669        | BSC         | multistage |
| SPB | $\geq 13438$ | BSC         | ML         |
| GVB | $\leq 3800$  | structured  | ???        |

<∄ > < ≣ > < ≣ >

### Conclusion



The structure of the HQC error enables

- tighter DFR estimates
- Short codes with structure-aware decoder

#### Conclusion

ТШ

The structure of the HQC error enables

- tighter DFR estimates
- Short codes with structure-aware decoder

Can one

- ⑦ obtain a provable DFR analysis?
- ⑦ construct codes with efficient, structure-aware decoder?

#### Conclusion

The structure of the HQC error enables

- tighter DFR estimates
- Short codes with structure-aware decoder

#### Can one

- ⑦ obtain a provable DFR analysis?
- ⑦ construct codes with efficient, structure-aware decoder?

Thank you! Questions?





### Post-Quantum Cryptography





### Hamming Quasi-Cyclic (HQC)





Aguilar-Melchor, C., et al. (2017). Hamming quasi-cyclic (HQC). NIST PQC

Aguilar-Melchor, C., et al. (2018). Efficient encryption from random quasi-cyclic codes. IEEE T-IT

- Based on hardness of decoding random quasi-cyclic codes
- On hidden code structure
- Precise DFR analysis





$$\mathcal{C}$$
 needs to decode  $t_1 - t_2 u_2 = c + \underbrace{u_1 r_2 + u_2 r_1 + r_3}_{\text{error } e}$ 

#### <⊡ > < ≣ > < ≣ >

### A First Look at the Error

- $P(|\boldsymbol{e}| = w)$  difficult for  $\boldsymbol{e} = \boldsymbol{u}_1 \boldsymbol{r}_2 + \boldsymbol{u}_2 \boldsymbol{r}_1 + \boldsymbol{r}_3$
- $\rho = P(e_i = 1)$  simple

#### **BSC** Approximation

Under the independence assumption,

$$P(|\boldsymbol{e}| = w) \approx {n \choose w} \rho^w (1 - \rho)^{n-w}.$$



#### Seems conservative but not precise!

### A Closer Look at the Error

- Consider  $a = u \cdot r = \sum_{\ell \in \text{supp}(u)} x^{\ell} \cdot r(x)$
- $b_i$  = # ones added in *i*-th position
- $a_i = b_i \mod 2$
- $\sum_i b_i = |\boldsymbol{u}| \cdot |\boldsymbol{r}|$

#### **Proposed Approximation**

Assume  $b_0, \ldots, b_{n-1}$  indep. hypergeometric, let  $a_i = b_i \mod 2$ :

$$P(|\boldsymbol{u} \cdot \boldsymbol{r}| = w) \approx P\left(\sum_{i} a_{i} \mid \sum_{i} b_{i} = |\boldsymbol{u}| \cdot |\boldsymbol{r}|\right).$$







# Simple DFR analysis under independence assumption Modified analysis for arbitrary error weight distribution



#### So much fuss for such a small improvement?

Sebastian Bitzer (TUM)

### Beyond the BSC



plausible for BSC for proposed model



#### **GV-like Bound**

#### There exist codes of length

$$n \le \lambda + 2w_u \log_2\left(\frac{n \cdot e}{w_u}\right) + 6w_r \log_2\left(\frac{n \cdot e}{2w_r}\right) + \log_2(w_r)$$

|     | length       | error model | decoder    |
|-----|--------------|-------------|------------|
| HQC | 17669        | BSC         | multistage |
| SPB | $\geq 13438$ | BSC         | ML         |
| GVB | $\leq 3800$  | structured  | ???        |

#### <⊡ > < ≧ > < ≧ )

### Error Structure-Aware Decoding

ПΠ

Remember:  $e = u_1 \cdot r_2 + u_2 \cdot r_1 + r_3$ 

#### **Proposed Decoder**

- 1. Decode inner codewords, get  $\hat{e}$ .
- 2. Estimate  $\hat{r}_1, \hat{r}_2$  using  $\hat{e}, u_1, u_2$ .
- 3. Estimate error  $e^* = u_1 \cdot \hat{r}_2 + u_2 \cdot \hat{r}_1$ .

4. Decode 
$$t_1 + t_2 u_2 - e^* = c + e - e^*$$
.

 $\Rightarrow$  error weight reduced if  $\hat{m{r}}_1 pprox m{r}_1$  and  $\hat{m{r}}_2 pprox m{r}_2$ 





### Decoding Performance Results



Considerable improvements conceivable  $\checkmark$ 

#### Conclusion

The structure of the HQC error enables

- tighter DFR estimates
- Short codes with structure-aware decoder
- improved decoding performance in practice

#### Can one

- ⑦ obtain a provable DFR analysis?
- ⑦ construct codes with efficient, structure-aware decoder?
- ⑦ provide DFR analysis for the proposed decoder?

Thank you! Questions?

###