

医下子 医

< A

Weighted-Hamming Metric: Codes and Bounds

Sebastian Bitzer TUM Alberto Ravagnani TU\e Violetta Weger TUM

JMM 2025 Seattle

A Tale of Two Channels

A Tale of Two Channels

Standard solutions:

- Raptor
- Turbo
- LDPC
- Polar

• . . .

A Tale of Two Channels

Goal of this Work Analyze codes that uniquely decode *all* errors with $P(e) \ge \theta$

<日・< 注 > < 注

From Probability to Metric

- Matching a Channel 🜣 -----

A distance matches a channel if

$$d(\boldsymbol{c},\boldsymbol{r}) \leq d(\boldsymbol{c}',\boldsymbol{r}) \iff P(\boldsymbol{c} \mid \boldsymbol{r}) \geq P(\boldsymbol{c}' \mid \boldsymbol{r})$$

From Probability to Metric

– Matching a Channel ♡ ——

A distance matches a channel if

$$d(\boldsymbol{c},\boldsymbol{r}) \leq d(\boldsymbol{c}',\boldsymbol{r}) \iff P(\boldsymbol{c} \mid \boldsymbol{r}) \geq P(\boldsymbol{c}' \mid \boldsymbol{r})$$

Deza, Deza (2009). Encyclopedia of Distances.

— Weighted-Hamming Weight — Fix $(\lambda_1, \ldots, \lambda_m) \in \mathbb{N}^m$.

$$\mathsf{wt}(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_m) = \sum_{\ell=1}^m \lambda_\ell \cdot \mathsf{wt}_\mathsf{H}(\boldsymbol{c}_\ell)$$

From Probability to Metric

글 > < 글

Deza, Deza (2009). Encyclopedia of Distances.

Matching a Channel \heartsuit Weighted-Hamming WeightA distance matches a channel ifFix $(\lambda_1, \ldots, \lambda_m) \in \mathbb{N}^m$. $d(c, r) \leq d(c', r) \iff P(c \mid r) \geq P(c' \mid r)$ wt $(c_1, \ldots, c_m) = \sum_{\ell=1}^m \lambda_\ell \cdot wt_H(c_\ell)$

Sebastian Bitzer (TUM)

From Probability to Metric

글 > < 글

Deza, Deza (2009). Encyclopedia of Distances.

Matching a Channel \heartsuit Weighted-Hamming WeightA distance matches a channel ifFix $(\lambda_1, \dots, \lambda_m) \in \mathbb{N}^m$. $d(\boldsymbol{c}, \boldsymbol{r}) \leq d(\boldsymbol{c}', \boldsymbol{r}) \iff P(\boldsymbol{c} \mid \boldsymbol{r}) \geq P(\boldsymbol{c}' \mid \boldsymbol{r})$ wt $(\boldsymbol{c}_1, \dots, \boldsymbol{c}_m) = \sum_{\ell=1}^m \lambda_\ell \cdot wt_H(\boldsymbol{c}_\ell)$

$$\lambda_1 = 1$$
 $\lambda_2 = 2$ wt(c₁, c₂) = 3
wt(c₁, c₂) = 6

Sebastian Bitzer (TUM)

Codes in the Weighted-Hamming Metric

▲御 ▶ ▲ 三 ▶ ▲ 三 ▶

Trivial constructions: → Hamming-metric code

→ Independent codes for subchannels

Codes in the Weighted-Hamming Metric

< 同 > < 三 > < 三)

Trivial constructions: → Hamming-metric code

→ Independent codes for subchannels

Previous work:

Bezzateev, Shekhunova (2013). Class of Generalized

Goppa Codes Perfect in Weighted Hamming Metric.

- Moon (2018). Weighted Hamming Metric Structures.

perfect codes for certain parameters

Codes in the Weighted-Hamming Metric

< 同 > < 三 > < 三)

Trivial constructions: → Hamming-metric code

→ Independent codes for subchannels

Previous work:

Bezzateev, Shekhunova (2013). Class of Generalized

Goppa Codes Perfect in Weighted Hamming Metric.

Moon (2018). Weighted Hamming Metric Structures.

perfect codes for certain parameters

Open: General bounds and constructions

Silva, Kschischang (2009). On Metrics for Error Correction in Network Coding.

→ General framework for adversarial error correction

Silva, Kschischang (2009). On Metrics for Error Correction in Network Coding.

→ General framework for adversarial error correction

 < 回 > < 三 > < 三 >

Silva, Kschischang (2009). On Metrics for Error Correction in Network Coding.

→ General framework for adversarial error correction

Error-Correction Capability Let $\tau(c) = \min_{r \in \mathbb{R}^n} \max\{ \operatorname{wt}(r), \operatorname{wt}(c-r) \} - 1$

Linear C *t*-error-correcting $\iff t \le \tau(C) = \min_{c \in C \setminus \{0\}} \tau(c)$

 $- \text{ Minimum Distance} - \tau(\mathcal{C}) \ge \left| \frac{d(\mathcal{C}) - 1}{2} \right|$

Equality for *normal* metrics

Silva, Kschischang (2009). On Metrics for Error Correction in Network Coding.

→ General framework for adversarial error correction

Linear \mathcal{C} *t*-error-correcting $\iff t \leq \tau(\mathcal{C}) = \min_{\boldsymbol{c} \in \mathcal{C} \setminus \{0\}} \tau(\boldsymbol{c})$

Equality for *normal* metrics

Hamming metric, rank metric, ... are normal.

Silva, Kschischang (2009). On Metrics for Error Correction in Network Coding.

→ General framework for adversarial error correction

 $\mathsf{Linear} \ \mathcal{C} \ t \text{-error-correcting} \iff t \leq \tau(\mathcal{C}) = \min_{\boldsymbol{c} \in \mathcal{C} \setminus \{0\}} \tau(\boldsymbol{c})$

- Minimum Distance $\tau(\mathcal{C}) \ge \left\lfloor \frac{d(\mathcal{C}) - 1}{2} \right\rfloor$

Equality for *normal* metrics

Hamming metric, rank metric, ... are normal. What about the weighted-Hamming metric?

Being Normal is Boring!

$$\lambda_1 = 1$$
 $\lambda_2 = 2$

 $c_0 = (0, 0, 0 | 0, 0, 0)$

 $c_1 = (0, 0, 0 | 1, 1, 1)$

• IP > < E > < E >

Being Normal is Boring!

Being Normal is Boring!

Sebastian Bitzer (TUM)

Being Normal is Boring!

→ corrects all errors beyond $\left\lfloor \frac{d-1}{2} \right\rfloor$

Being Normal is Boring!

Bound on
$$\tau$$
 via d
Let $\lambda_1 \leq \ldots \leq \lambda_m$.
 $\left\lfloor \frac{d(\mathcal{C}) - 1}{2} \right\rfloor \leq \tau(\mathcal{C}) \leq \left\lfloor \frac{d(\mathcal{C}) + \lambda_m}{2} \right\rfloor - 1$

→ corrects all errors beyond $\left\lfloor \frac{d-1}{2} \right\rfloor$

Being Normal is Boring!

Bound on
$$\tau$$
 via d
Let $\lambda_1 \leq \ldots \leq \lambda_m$.
 $\left\lfloor \frac{d(\mathcal{C}) - 1}{2} \right\rfloor \leq \tau(\mathcal{C}) \leq \left\lfloor \frac{d(\mathcal{C}) + \lambda_m}{2} \right\rfloor - 1$

→ corrects all errors beyond $\left\lfloor \frac{d-1}{2} \right\rfloor$

→ Build on known bounds for the Hamming metric

Being Normal is Boring!

Bound on
$$\tau$$
 via d
Let $\lambda_1 \leq \ldots \leq \lambda_m$.
 $\left\lfloor \frac{d(\mathcal{C}) - 1}{2} \right\rfloor \leq \tau(\mathcal{C}) \leq \left\lfloor \frac{d(\mathcal{C}) + \lambda_m}{2} \right\rfloor - 1$

→ Build on known bounds for the Hamming metric

→ corrects all errors beyond $\left\lfloor \frac{d-1}{2} \right\rfloor$

Hamming

Singleton

Plotkin

Linear Programming

Gilbert-Varshamov

Sebastian Bitzer (TUM)

Being Normal is Boring!

Bound on
$$\tau$$
 via d
Let $\lambda_1 \leq \ldots \leq \lambda_m$.
 $\left\lfloor \frac{d(\mathcal{C}) - 1}{2} \right\rfloor \leq \tau(\mathcal{C}) \leq \left\lfloor \frac{d(\mathcal{C}) + \lambda_m}{2} \right\rfloor - 1$

→ Build on known bounds for the Hamming metric

Hamming

Singleton

 \rightarrow corrects all errors beyond $\left| \frac{d-1}{2} \right|$

Plotkin

Linear Programming

Gilbert-Varshamov

Sebastian Bitzer (TUM)

<⊡> < ≣ > < ≣ >

Singleton-Like Bound on \boldsymbol{d}

. . . .

Singleton-like Bound Let $\lambda_1 \leq \ldots \leq \lambda_m$, dim $(\mathcal{C}) = k$. $d \leq d_{SB} = \sum_{\ell=1}^{\ell'} n_\ell \lambda_\ell + \left(\sum_{\ell=\ell'+1}^m n_\ell - k + 1\right) \cdot \lambda_{\ell'+1}$, where ℓ' maximal s.t. $\sum_{\ell=1}^{\ell'} n_\ell \leq n - k + 1$.

Singleton-Like Bound on \boldsymbol{d}

 λ_3

 λ_1

 λ_2

Singleton-Like Bound on \boldsymbol{d}

Singleton-Like Bound on d

► 4 Ξ

< A

Singleton-like Bound -Let $\lambda_1 \leq \ldots \leq \lambda_m$, dim $(\mathcal{C}) = k$. λ_1 λ_2 λ_3 00 0 $d \le d_{\rm SB} = \sum_{\ell=1}^{\ell'} n_\ell \lambda_\ell + \left(\sum_{\ell=\ell'+1}^m n_\ell - k + 1\right) \cdot \lambda_{\ell'+1},$. . . ℓ' blocks k-1 zeros wt $\leq n_1 \lambda_1$ where ℓ' maximal s.t. $\sum_{\ell=1}^{\ell'} n_{\ell} \leq n - k + 1$.

Singleton-Like Bound on d

とう 戸

Singleton-like Bound -Let $\lambda_1 \leq \ldots \leq \lambda_m$, dim $(\mathcal{C}) = k$. $d \le d_{\rm SB} = \sum_{\ell=1}^{\ell'} n_\ell \lambda_\ell + \left(\sum_{\ell=\ell'+1}^m n_\ell - k + 1\right) \cdot \lambda_{\ell'+1},$ where ℓ' maximal s.t. $\sum_{\ell=1}^{\ell'} n_{\ell} \leq n - k + 1$.

<⊡><≣><≣

Singleton-Like Bound on \boldsymbol{d}

Singleton-like Bound Let $\lambda_1 \leq \ldots \leq \lambda_m$, dim $(\mathcal{C}) = k$. $d \leq d_{SB} = \sum_{\ell=1}^{\ell'} n_\ell \lambda_\ell + \left(\sum_{\ell=\ell'+1}^m n_\ell - k + 1\right) \cdot \lambda_{\ell'+1}$, where ℓ' maximal s.t. $\sum_{\ell=1}^{\ell'} n_\ell \leq n - k + 1$.

Observation: → MDS codes optimal → But smaller field size possible

Singleton-Like Bound on τ

ТШ

Denote $d_{SB} = \sum_{\ell=1}^{\ell'} n_\ell \lambda_\ell + (\sum_{\ell=\ell'+1}^m n_\ell - k + 1) \cdot \lambda_{\ell'+1}$, where ℓ' maximal s.t. $\sum_{\ell=1}^{\ell'} n_\ell \leq n - k + 1$

Singleton-Like Bound on τ

ТШ

Denote
$$d_{SB} = \sum_{\ell=1}^{\ell'} n_\ell \lambda_\ell + (\sum_{\ell=\ell'+1}^m n_\ell - k + 1) \cdot \lambda_{\ell'+1}$$
, where ℓ' maximal s.t. $\sum_{\ell=1}^{\ell'} n_\ell \le n - k + 1$

(∄)) < ≣) < ≣

Singleton-Like Bound on τ

Denote $d_{SB} = \sum_{\ell=1}^{\ell'} n_\ell \lambda_\ell + (\sum_{\ell=\ell'+1}^m n_\ell - k + 1) \cdot \lambda_{\ell'+1}$, where ℓ' maximal s.t. $\sum_{\ell=1}^{\ell'} n_\ell \leq n - k + 1$

(∄)) < ≣) < ≣

Singleton-Like Bound on τ

Denote $d_{SB} = \sum_{\ell=1}^{\ell'} n_\ell \lambda_\ell + (\sum_{\ell=\ell'+1}^m n_\ell - k + 1) \cdot \lambda_{\ell'+1}$, where ℓ' maximal s.t. $\sum_{\ell=1}^{\ell'} n_\ell \leq n - k + 1$

Bounding au directly gives a tighter bound $\ensuremath{\mathfrak{O}}$

< 77 ▶ < 4 王 -٦Π

Some Curves

 $n_1 = n_2 = 7, \lambda_1 = 1, \lambda_2 = 2$

Some Curves

 $n_1 = n_2 = 7, \lambda_1 = 1, \lambda_2 = 2, q = 2$

Some Curves

 $n_1 = n_2 = 7, \lambda_1 = 1, \lambda_2 = 2, q = 2$

Some Curves

< 🗗 > < 🗄 > < 🖹 >

A Concatenated Construction

< 🗗 > < 🗄 > < 🖷 >

A Concatenated Construction

A Concatenated Construction

Increase flexibility:

→ Polyaphabetic outer code

· @ · · = · · = · TIM

A Concatenated Construction

Increase flexibility:

- → Polyaphabetic outer code
- → Multilevel concatentation

Conclusion

Weighted-Hamming metric suitable for parallel channels:

- \bigcirc Error-correction capability can exceed $\left\lfloor \frac{d-1}{2} \right\rfloor$
- O Bounds on d and au
- Concatenated code construction

Conclusion

Weighted-Hamming metric suitable for parallel channels:

- \bigcirc Error-correction capability can exceed $\left\lfloor \frac{d-1}{2} \right\rfloor$
- 3 Bounds on d and au
- Concatenated code construction

Future work:

- ? Calculate or bound $|\{x \in \mathbb{F}_q^n \mid \tau(x) \leq t\}|$
- ⑦ More code constructions?

(A) < (A)

Conclusion

Weighted-Hamming metric suitable for parallel channels:

- \bigcirc Error-correction capability can exceed $\left\lfloor \frac{d-1}{2} \right\rfloor$
- O Bounds on d and au
- Concatenated code construction

Future work:

- ? Calculate or bound $|\{x \in \mathbb{F}_q^n \mid \tau(x) \leq t\}|$
- ⑦ More code constructions?

Thank you! Questions?

