CROSS and Restricted Decoding Problems

Sebastian Bitzer, Paolo Santini, Antonia Wachter-Zeh, Violetta Weger

Modifying the Hard Problem

- Error set $\mathbb{E}=\left\{g^{i} \mid i \in\{1, \ldots, z\}\right\} \subset \mathbb{F}_{p}^{*}$ with $g \in \mathbb{F}_{p}^{*}$ of prime order z.
- $\left(\mathbb{E}^{n}, \star\right)$ is group w.r.t. component-wise multiplication of vectors, denoted by \star.
- A subgroup is compactly represented as $G=\left\{\boldsymbol{e}=g^{x} \mid \boldsymbol{x} \boldsymbol{M}^{\top}=\mathbf{0}\right\}$ with $\boldsymbol{M} \in \mathbb{F}_{z}^{(n-m) \times n}$

Restricted Syndrome Decoding Problem with Subgroup G

Let $\boldsymbol{M} \in \mathbb{F}_{z}^{(n-m) \times n}, G=\left\{e=g^{x} \mid x \boldsymbol{M}^{\top}=\mathbf{0}\right\}, \mathbf{H} \in \mathbb{F}_{p}^{(n-k) \times n}$, and $\mathbf{s} \in \mathbb{F}_{p}^{n-k}$.
Find a vector $\mathbf{e} \in G$ with $\mathbf{e} \mathbf{H}^{\top}=\mathbf{s}$.
\Rightarrow solution unique w.h.p. for $z^{m}<p^{n-k}$

Example for R-SDP(G) instance

For $p=7$ and $z=3, g=2$ has order 3, i.e., the error set is given by

$$
\mathbb{E}=\left\{g^{0}=1, g^{1}=2, g^{2}=4\right\} \subset \mathbb{F}_{7}
$$

Let $n=5$. To define a subgroup of \mathbb{E}^{5} of order $m=3$, we can use the parity-check matrix

$$
\boldsymbol{M}=\left(\begin{array}{lllll}
2 & 0 & 1 & 1 & 0 \\
2 & 1 & 2 & 0 & 1
\end{array}\right), \text { for which }(1,2,0,1,2) \cdot \boldsymbol{M}^{\top}=(0,0) .
$$

Then, a valid error vector is computed as $e=\left(g^{1}=2, g^{2}=4, g^{0}=1, g^{1}=2, g^{2}=4\right) \in G$. This error is the unique solution of the instance given by

$$
\boldsymbol{H}=\left(\begin{array}{lllll}
1 & 0 & 6 & 1 & 5 \\
0 & 1 & 0 & 3 & 4
\end{array}\right) \text { and } \boldsymbol{s}=\boldsymbol{e} \cdot \boldsymbol{H}^{T}=(2,5) .
$$

For security category 1 , the R-SDP (G) variant of CROSS uses

- random codes with $p=509, n=55, k=36$,
- random subgroups with $z=127, m=25$.

A Meet-in-the-Middle Solver

Find subcodes of $\langle\boldsymbol{M}\rangle$ of with support J_{i} of size $\left|J_{i}\right|=j_{i}$ and dimension $j_{i}-\rho_{i}$.

Computational Complexity
Let $P\left(j_{i}, \rho_{i}\right)$ denote the probability that a subcode with dimension $j_{i}-\rho_{i}$ and support size j_{i} exists. Denote as \mathcal{L}_{i} the list of errors \boldsymbol{e}_{i}. Ignoring memory access cost and polynomial factors, the number of required operations is at least

$$
\min _{J_{1}, J_{2}}\left\{\frac{\left|\mathcal{L}_{1}\right|+\left|\mathcal{L}_{2}\right|+N_{\text {coll }}}{1+z^{m} p^{k-n}}+\frac{1}{P\left(j_{1}, \rho_{1}\right) \cdot P\left(j_{2}, \rho_{2}\right)}\right\}
$$

where the list size is $\left|\mathcal{L}_{i}\right|=z^{\rho_{i}}$, and the number of collisions is given by

$$
N_{\text {coll }}=\frac{\left|\mathcal{L}_{1}\right| \cdot\left|\mathcal{L}_{2}\right|}{p^{\ell} \cdot z^{\ell^{\prime}}}
$$

since the effective syndromes sizes are $\ell=j_{1}+j_{2}-k$ and $\ell^{\prime}=\max \left\{0, \rho_{1}+\rho_{2}-m\right\}$.

Further improvements?

References

[1] N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme," Asiacrypt, 2001. [2] J. Stern, "A new identification scheme based on syndrome decoding," Annual International Cryptology Conference, 1993. [3] M. Baldi A. Barenghi, S. Bitzer, P. Karl, F. Manganiello, A. Pavoni, G. Pelosi, P. Santini, J. Schupp, F. Slaughter, A. Wachter-Zeh, V. Weger, "CROSS. Codes and restricted objects signature scheme," Submission to NIST PQC Standardization Process, 2023. [4] A. Fiat, A. Shamir, "How to prove yourself: Practical solutions to identification and signature problems," Crypto, 1986. [5] NIST, "Call for additional digital signature schemes for the post-quantum cryptography standardization process", 2022 [6] M. Baldi, M. Battaglioni, F. Chiaraluce, A.-L. Horlemann-Trautmann, E. Persichetti, P. Santini, V. Weger, (2020). "A new path to code-based signatures via identification schemes with restricted errors". arXiv preprint.

