Institute for Communications Engineering School of Computation, Information and Technology Technical University of Munich

CROSS and Restricted Decoding Problems

Sebastian Bitzer, Paolo Santini, Antonia Wachter-Zeh, Violetta Weger

Code-based Digital Signatures

Underlying problem is well trusted:

Syndrome Decoding Problem

Modifying the Hard Problem

- Error set $\mathbb{E} = \{g^i \mid i \in \{1, \dots, z\}\} \subset \mathbb{F}_p^*$ with $g \in \mathbb{F}_p^*$ of prime order z.
- (\mathbb{E}^n, \star) is group w.r.t. component-wise multiplication of vectors, denoted by \star .
- A subgroup is compactly represented as $G = \left\{ e = g^x \mid xM^\top = \mathbf{0} \right\}$ with $M \in \mathbb{F}_z^{(n-m) \times n}$.

Let parity-check matrix $\mathbf{H} \in \mathbb{F}_p^{(n-k) \times n}$, syndrome $\mathbf{s} \in \mathbb{F}_p^{n-k}$ and weight w be given. Find an error vector $e \in \mathbb{F}_{p}^{n}$ with $eH^{\top} = s$ and $wt_{H}(e) = w$.

Restricted Syndrome Decoding Problem with Subgroup G

Let $M \in \mathbb{F}_{z}^{(n-m) \times n}$, $G = \left\{ e = g^{x} \mid xM^{\top} = \mathbf{0} \right\}$, $\mathbf{H} \in \mathbb{F}_{p}^{(n-k) \times n}$, and $\mathbf{s} \in \mathbb{F}_{p}^{n-k}$. Find a vector $e \in G$ with $eH^{+} = s$.

 \Rightarrow solution unique w.h.p. for $z^m < p^{n-k}$

Example for R-SDP(G) instance

For p = 7 and z = 3, g = 2 has order 3, i.e., the error set is given by $\mathbb{E} = \{g^0 = 1, g^1 = 2, g^2 = 4\} \subset \mathbb{F}_7.$

Let n = 5. To define a subgroup of \mathbb{E}^5 of order m = 3, we can use the parity-check matrix $M = \begin{pmatrix} 2 & 0 & 1 & 1 & 0 \\ 2 & 1 & 2 & 0 & 1 \end{pmatrix}, \text{ for which } (1, 2, 0, 1, 2) \cdot M^{\top} = (0, 0).$

Then, a valid error vector is computed as $e = (g^1 = 2, g^2 = 4, g^0 = 1, g^1 = 2, g^2 = 4) \in G$. This error is the unique solution of the instance given by

 $H = \begin{pmatrix} 1 & 0 & 6 & 1 & 5 \\ 0 & 1 & 0 & 3 & 4 \end{pmatrix}$ and $s = e \cdot H^T = (2, 5)$.

For security category 1, the R-SDP(*G*) variant of CROSS uses

• random codes with p = 509, n = 55, k = 36, • random subgroups with z = 127, m = 25.

A Meet-in-the-Middle Solver

000	$\sim +$	10	KON			
Secr	eι	IS	rev	'eal	lea	-

accepted.

06. Coles and Restricte

cepting impersonators.

CROSS: Design Rationale [3]

Standard Optimizations

- PRNG and Merkle trees
- unbalanced challenges

EUF-CMA Security

• Fiat-Shamir [4] transformed ZK-ID no further assumptions

Efficient Arithmetic

• small Mersenne primes no permutations

Decoding Problem

 compact objects no trapdoor required

International Team

• Clemson, PoliMI, TUM, UNIVPM

•www.cross-crypto.com

NIST Competition

• standardization process [5] • one of 40 candidates

Computational Complexity

Let $P(j_i, \rho_i)$ denote the probability that a subcode with dimension $j_i - \rho_i$ and support size j_i exists. Denote as \mathcal{L}_i the list of errors e_i . Ignoring memory access cost and polynomial factors, the number of required operations is at least

$$\min_{J_1,J_2} \left\{ \frac{|\mathcal{L}_1| + |\mathcal{L}_2| + N_{\text{coll}}}{1 + z^m p^{k-n}} + \frac{1}{P(j_1,\rho_1) \cdot P(j_2,\rho_2)} \right\}$$

where the list size is $|\mathcal{L}_i| = z^{\rho_i}$, and the number of collisions is given by

$$N_{\text{coll}} = \frac{|\mathcal{L}_1| \cdot |\mathcal{L}_2|}{n^{\ell} \cdot z^{\ell'}},$$

The Underlying Hard Problem

Generalization of the classical SDP [6]:

Restricted Syndrome Decoding Problem

Let $\mathbb{E} \subset \mathbb{F}_p^*$, $\mathbf{H} \in \mathbb{F}_p^{(n-k) \times n}$, and $\mathbf{s} \in \mathbb{F}_p^{n-k}$. Find $\mathbf{e} \in (\mathbb{E} \cup \{0\})^n$ with $\mathbf{eH}^{\top} = \mathbf{s}$ and $wt_H(\mathbf{e}) = w$.

For security category 1, the parameters of CROSS are

• random codes with p = 127, n = 127, k = 76, • error values in $\mathbb{E} = \{1, 2, 4, 8, 16, 32, 64\}$, and w = n.

since the effective syndromes sizes are $\ell = j_1 + j_2 - k$ and $\ell' = \max\{0, \rho_1 + \rho_2 - m\}$.

Further improvements?

References

[1] N. Courtois, M. Finiasz, N. Sendrier. "How to achieve a McEliece-based digital signature scheme," Asiacrypt, 2001.

[2] J. Stern, "A new identification scheme based on syndrome decoding," Annual International Cryptology Conference, 1993.

[3] M. Baldi A. Barenghi, S. Bitzer, P. Karl, F. Manganiello, A. Pavoni, G. Pelosi, P. Santini, J. Schupp, F. Slaughter, A. Wachter-Zeh, V. Weger, "CROSS. Codes and restricted objects signature scheme," Submission to NIST PQC Standardization Process, 2023.

[4] A. Fiat, A. Shamir, "How to prove yourself: Practical solutions to identification and signature problems," Crypto, 1986.

[5] NIST, "Call for additional digital signature schemes for the post-quantum cryptography standardization process", 2022

[6] M. Baldi, M. Battaglioni, F. Chiaraluce, A.-L. Horlemann-Trautmann, E. Persichetti, P. Santini, V. Weger, (2020). "A new path to code-based signatures via identification schemes with restricted errors". arXiv preprint.

Technical University of Munich School of Computation, Information and Technology Institute for Communications Engineering

