

< E

Non-Random Codes in Code-Based Cryptography

 $\frac{\text{Sebastian Bitzer}}{\text{TUM}}$

PICS

Coding and Cryptography (COD)

Notations & Definitions

•
$$\mathcal{C} = \{ \boldsymbol{m}\boldsymbol{G} \mid \boldsymbol{m} \in \mathbb{F}^k \} = \{ \boldsymbol{c} \mid \boldsymbol{c}\boldsymbol{H}^{\mathsf{T}} = \boldsymbol{0} \} \subset \mathbb{F}^n$$

- Generator matrix $\boldsymbol{G} \in \mathbb{F}^{k \times n}$
- Parity-check matrix $\boldsymbol{H} \in \mathbb{F}^{(n-k) imes n}$

 Notations & Definition 	ns
--	----

•
$$\mathcal{C} = \{ \boldsymbol{m}\boldsymbol{G} \mid \boldsymbol{m} \in \mathbb{F}^k \} = \{ \boldsymbol{c} \mid \boldsymbol{c}\boldsymbol{H}^{\mathsf{T}} = \boldsymbol{0} \} \subset \mathbb{F}^n$$

- Generator matrix $G \in \mathbb{F}^{k \times n}$
- Parity-check matrix $\boldsymbol{H} \in \mathbb{F}^{(n-k) imes n}$

— 75 Years of Coding ——

RS, Goppa, polar, convolutional, \ldots codes

→ structure allows efficient decoding

Coded computation, post-quantum cryptography, DNA storage, network coding

Coded computation, post-quantum cryptography, DNA storage, network coding

• # • • = • • = • **TLM**

Code-based Cryptography

- Decoding Problem -

 $\begin{array}{ll} \mbox{Given:} \ \boldsymbol{y} \in \mathbb{F}^n \ \mbox{and} \ \boldsymbol{G} \in \mathbb{F}^{k \times n} \\ \mbox{Find:} \ \ \boldsymbol{m} \in \mathbb{F}^k \ \mbox{s.t.} \ \ \boldsymbol{y} = \boldsymbol{m} \boldsymbol{G} + \boldsymbol{e} \ \mbox{with} \ |\boldsymbol{e}| \leq t \end{array}$

<日・< 注・< 注)

Code-based Cryptography

ЛЛ

Decoding Problem -

 $\begin{array}{ll} \mbox{Given:} \ \boldsymbol{y} \in \mathbb{F}^n \ \mbox{and} \ \boldsymbol{G} \in \mathbb{F}^{k \times n} \\ \mbox{Find:} \ \ \boldsymbol{m} \in \mathbb{F}^k \ \mbox{s.t.} \ \ \boldsymbol{y} = \boldsymbol{m} \boldsymbol{G} + \boldsymbol{e} \ \mbox{with} \ |\boldsymbol{e}| \leq t \end{array}$

Syndrome Decoding Problem –

 $\begin{array}{ll} \mbox{Given:} \ s \in \mathbb{F}^{n-k} \ \mbox{and} \ \ H \in \mathbb{F}^{(n-k) \times n} \\ \mbox{Find:} \ \ e \in \mathbb{F}^n \ \ \mbox{s.t.} \ \ e H^\intercal = s \ \ \mbox{and} \ \ |e| \leq t \end{array}$

Code-based Cryptography

Ш

Decoding Problem -

Given: $y \in \mathbb{F}^n$ and $G \in \mathbb{F}^{k \times n}$ Find: $m \in \mathbb{F}^k$ s.t. y = mG + e with $|e| \le t$

- Syndrome Decoding Problem -

 $\begin{array}{ll} \mbox{Given:} \ s \in \mathbb{F}^{n-k} \ \mbox{and} \ \ H \in \mathbb{F}^{(n-k) \times n} \\ \mbox{Find:} \ \ e \in \mathbb{F}^n \ \ \mbox{s.t.} \ \ e H^\intercal = s \ \ \mbox{and} \ \ |e| \leq t \end{array}$

Code-based Cryptography

Ш

Decoding Problem -

Given: $y \in \mathbb{F}^n$ and $G \in \mathbb{F}^{k \times n}$ Find: $m \in \mathbb{F}^k$ s.t. y = mG + e with $|e| \le t$

- Syndrome Decoding Problem -

 $\begin{array}{ll} \mbox{Given:} \ s \in \mathbb{F}^{n-k} \ \mbox{and} \ \ H \in \mathbb{F}^{(n-k) \times n} \\ \mbox{Find:} \ \ e \in \mathbb{F}^n \ \ \mbox{s.t.} \ \ e H^\top = s \ \ \mbox{and} \ \ |e| \leq t \end{array}$

Bob

<日 < 三 > < 三 > < 三 >

Code-based Cryptography

Ш

Decoding Problem -

Given: $y \in \mathbb{F}^n$ and $G \in \mathbb{F}^{k \times n}$ Find: $m \in \mathbb{F}^k$ s.t. y = mG + e with $|e| \le t$

- Syndrome Decoding Problem -

 $\begin{array}{ll} \mbox{Given:} \ s \in \mathbb{F}^{n-k} \ \mbox{and} \ \ H \in \mathbb{F}^{(n-k) \times n} \\ \mbox{Find:} \ \ e \in \mathbb{F}^n \ \ \mbox{s.t.} \ \ e H^\intercal = s \ \ \mbox{and} \ \ |e| \leq t \end{array}$

Public-Key Encryption à la McEliece

message $oldsymbol{m} \in \mathbb{F}^k$

Public-Key Encryption à la McEliece

message $oldsymbol{m} \in \mathbb{F}^k$

▲ 伊 ト ▲ 三 ト ▲ 三 ト

٦Π

Sebastian Bitzer (TUM)

Public-Key Encryption à la McEliece

sk: C, C.DEC corrects t errors

pk: Generic $\boldsymbol{G} \in \mathbb{F}^{k \times n}$ of \mathcal{C}

message	m	e	\mathbb{F}^k
---------	---	---	----------------

< 🗗 ▶ <

물 네 물 네

πп

Sebastian Bitzer (TUM)

물 네 물 네

< 🗗 ▶ <

message $oldsymbol{m} \in \mathbb{F}^k$
$e \in \mathbb{F}^n$ with $ e \le t$

sk: C, C.DEC corrects t errors

Alice

pk: Generic $\boldsymbol{G} \in \mathbb{F}^{k \times n}$ of \mathcal{C}

$$\hat{m} \leftarrow \mathcal{C}.\mathsf{DEC}(y)$$

ct: y

5

 $y \leftarrow mG + e \in \mathbb{F}^n$

< 🗗 ▶ <

물 네 물 네

ТПП

Sebastian Bitzer (TUM)

< A > <

とう 戸

Sebastian Bitzer (TUM)

く 伊 ト く ヨ ト く ヨ ト

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

Goppa codes proposed in 1978

Sebastian Bitzer (TUM)

A Brief History of McEliece

Weger, V., et al. (2022). A survey on code-based cryptography. Lect. Notes Math.

GRS codes proposed in 1986

A Brief History of McEliece

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

GRS codes proposed in 1986, broken in 1992

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

Gabidulin codes proposed in 1991

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

Gabidulin codes proposed in 1991, broken in 2008

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

Reed-Muller codes proposed in 1994

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

Reed-Muller codes proposed in 1994, broken in 2007

Weger, V., et al. (2022). A survey on code-based cryptography. Lect. Notes Math.

AG codes proposed in 1996

▲ 伊 ♪ ▲ 臣 ♪ ▲ 臣 ♪

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

AG codes proposed in 1996, broken in 2014

Weger, V., et al. (2022). A survey on code-based cryptography. Lect. Notes Math.

LDPC codes proposed in 2000

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

LDPC codes proposed in 2000, modifications required

Weger, V., et al. (2022). A survey on code-based cryptography. Lect. Notes Math.

Convolutional codes proposed in 2012

▲ 伊 ♪ ▲ 臣 ♪ ▲ 臣 ♪

Weger, V., et al. (2022). A survey on code-based cryptography. Lect. Notes Math.

Convolutional codes proposed in 2012, broken in 2013

▲ 伊 ♪ ▲ 臣 ♪ ▲ 臣 ♪

Weger, V., et al. (2022). A survey on code-based cryptography. Lect. Notes Math.

Polar codes proposed in 2014

▲ 御 ▶ ▲ 注 ▶ ▲ 注 ♪

Weger, V., et al. (2022). A survey on code-based cryptography. Lect. Notes Math.

Polar codes proposed in 2014, broken in 2018

▲ 御 ▶ ▲ 注 ▶ ▲ 注 ♪

Weger, V., et al. (2022). A survey on code-based cryptography. Lect. Notes Math.

A Brief History of McEliece

Weger, V., et al. (2022). A survey on code-based cryptography. *Lect. Notes Math.*

< 回 > < 三 > < 三 >

・日本 (日本) (日本)

A Fresh Idea

ТШ

McEliece's Idea

Efficient decoder but not leaked by G

<⊡><≣><≣>

A Fresh Idea

McEliece's Idea

Efficient decoder but not leaked by G

Aguilar-Melchor, C., et al. (2017).Hamming quasi-cyclic (HQC). *NIST PQC Competition*

(김) (혼) (혼)

A Fresh Idea

Efficient decoder but not leaked by G

HQC Idea ·

- Structured code (RS+RM)
- Public decoder
- · Secret key reduces error weight

Aguilar-Melchor, C., et al. (2017).Hamming quasi-cyclic (HQC). *NIST PQC Competition*

(∄) (≧) (≧)

A Fresh Idea

Efficient decoder but not leaked by G

HQC Idea ·

- Structured code (RS+RM)
- Public decoder
- · Secret key reduces error weight

Aguilar-Melchor, C., et al. (2017).Hamming quasi-cyclic (HQC). *NIST PQC Competition*

(∄) (≧) (≧)

A Fresh Idea

Efficient decoder but not leaked by G

HQC Idea ·

- Structured code (RS+RM)
- Public decoder
- · Secret key reduces error weight

Aguilar-Melchor, C., et al. (2017).Hamming quasi-cyclic (HQC). *NIST PQC Competition*

<⊡ > < ≣ > < ≣ >

Put a Ring on It

ТШТ

 \mathbb{F}^n

 $\boldsymbol{v} = (v_0, \dots, v_{n-1})$

 $\mathcal{R}_n \coloneqq \mathbb{F}[x] / (x^n - 1)$ $v(x) = \sum_{i=0}^{n-1} v_i x^i$

Sebastian Bitzer (TUM)

・日・・三・・ 三・

Put a Ring on It

 \mathbb{F}^n $\boldsymbol{v} = (v_0, \dots, v_{n-1})$

- Syndrome Decoding Problem

Given: $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$ Find: $e \in \mathbb{F}^n$ s.t. $eH^{\top} = s$ and $|e| \le t$ $\mathcal{R}_n \coloneqq \mathbb{F}[x]/(x^n - 1)$ $v(x) = \sum_{i=0}^{n-1} v_i x^i$

— Quasi-Cyclic (QC) SDP —

Given: $s \in \mathcal{R}_n$ and $h \in \mathcal{R}_n$ Find: e_1, e_2 s.t. $e_1 + e_2h = s$ and $|e_1| + |e_2| \le t$

・日・・三・・三・

Put a Ring on It

 \mathbb{F}^n $\boldsymbol{v} = (v_0, \dots, v_{n-1})$

- Syndrome Decoding Problem -

Given: $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$ Find: $e \in \mathbb{F}^n$ s.t. $eH^{\top} = s$ and $|e| \le t$ $\mathcal{R}_n \coloneqq \mathbb{F}[x]/(x^n - 1)$ $v(x) = \sum_{i=0}^{n-1} v_i x^i$

Quasi-Cyclic (QC) SDPGiven: $s \in \mathcal{R}_n$ and $h \in \mathcal{R}_n$ Find: e_1, e_2 s.t. $e_1 + e_2h = s$ and $|e_1| + |e_2| \le t$

<日・< 注 > < 注 >

Put a Ring on It

$$\mathbf{F}^n$$

$$\boldsymbol{v} = (v_0, \dots, v_{n-1})$$

- Syndrome Decoding Problem -

Given: $s \in \mathbb{F}^{n-k}$ and $H \in \mathbb{F}^{(n-k) \times n}$ Find: $e \in \mathbb{F}^n$ s.t. $eH^{\top} = s$ and $|e| \le t$ $\mathcal{R}_n \coloneqq \mathbb{F}[x]/(x^n - 1)$ $v(x) = \sum_{i=0}^{n-1} v_i x^i$

Quasi-Cyclic (QC) SDPGiven: $s \in \mathcal{R}_n$ and $h \in \mathcal{R}_n$ Find: e_1, e_2 s.t. $e_1 + e_2h = s$ and $|e_1| + |e_2| \le t$

HQC in a Nutshell

$$\mathcal{R}_n = \mathbb{F}[x]/(x^n - 1)$$

message $oldsymbol{m} \in \mathbb{F}^k$

HQC in a Nutshell

 $\mathcal{R}_n = \mathbb{F}[x]/(x^n - 1)$

message $oldsymbol{m} \in \mathbb{F}^k$

sk: $\boldsymbol{u}_1, \boldsymbol{u}_2 \in \mathcal{R}_n$ of wt w_u

 $\boldsymbol{h} \in \mathcal{R}_n$

pk: $s \leftarrow u_1 + hu_2$

pk: (h,s)

HQC in a Nutshell

	$\mathcal{R}_n = \mathbb{F}[x]/(x^n - 1)$	
(Alice)		<u>/ Bob \</u>
$oldsymbol{h}\in\mathcal{R}_n$		message $oldsymbol{m} \in \mathbb{F}^k$
sk: $\boldsymbol{u}_1, \boldsymbol{u}_2 \in \mathcal{R}_n$ of wt w_u		
pk: $s \leftarrow u_1 + hu_2$	pk: (<i>h</i> , <i>s</i>)	$oldsymbol{r}_1,oldsymbol{r}_2,oldsymbol{r}_3\in\mathcal{R}_n$ of wt w_r
		$y_1 \leftarrow mG + sr_2 + r_3$
	$ \overset{ct:}{\bullet} (\boldsymbol{y}_1, \boldsymbol{y}_2) $	$oldsymbol{y}_2 \leftarrow oldsymbol{r}_1 + oldsymbol{h} oldsymbol{r}_2$

HQC in a Nutshell

\bigcirc	$\mathcal{R}_n = \mathbb{F}[x]/(x^n - 1)$	\bigcirc
Alice		Bob
$oldsymbol{h}\in\mathcal{R}_n$		message $oldsymbol{m} \in \mathbb{F}^k$
sk: $\boldsymbol{u}_1, \boldsymbol{u}_2 \in \mathcal{R}_n$ of wt w_u		
pk: $s \leftarrow u_1 + hu_2$	pk: (<i>h</i> , <i>s</i>)	$oldsymbol{r}_1,oldsymbol{r}_2,oldsymbol{r}_3\in\mathcal{R}_n$ of wt w_r
		$y_1 \leftarrow mG + sr_2 + r_3$
$\hat{\boldsymbol{m}} \leftarrow \mathcal{C}.DEC(\boldsymbol{y}_1 - \boldsymbol{y}_2 \boldsymbol{u}_2)$	\leftarrow ct: $(\boldsymbol{y}_1, \boldsymbol{y}_2)$	$oldsymbol{y}_2 \leftarrow oldsymbol{r}_1 + oldsymbol{h} oldsymbol{r}_2$

HQC in a Nutshell

$$C$$
 needs to decode $y_1 - y_2 u_2 = c + \underbrace{u_1 r_2 + u_2 r_1 + r_3}_{\text{error } e}$

Sebastian Bitzer (TUM)

<⊡ > < ≣ > < ≣ >

Decryption Failure Is Not an Option

Security Issues –

- IND-CCA security
- Reaction attacks

Decryption Failure Is Not an Option

- Security Issues —
- IND-CCA security
- Reaction attacks

ct: $(oldsymbol{y}_1,oldsymbol{y}_2)$

IND-CCA security Reaction attacks

Security Issues -

Decryption Failure Is Not an Option

Decryption Failure Is Not an Option

Reaction attacks

Decryption Failure Is Not an Option

Guo, Q., & Johansson, T. (2020). A new decryption failure attack against HQC.

→ DFR needs to be $\leq 2^{-128}$

Sebastian Bitzer (TUM)

A First Look at the Error

P(|e| = w) difficult for $e = u_1r_2 + u_2r_1 + r_3$ $\rho = P(e_i = 1)$ simple

A First Look at the Error

$$P(|e| = w)$$
 difficult for $e = u_1r_2 + u_2r_1 + r_3$
 $\rho = P(e_i = 1)$ simple

BSC Approximation -

Under the independence assumption,

$$P(|\boldsymbol{e}| = w) \approx {n \choose w} \rho^w (1 - \rho)^{n-w}.$$

< **⊡** > < ≣ > < ≣ >

A First Look at the Error

P(|e| = w) difficult for $e = u_1r_2 + u_2r_1 + r_3$ $\rho = P(e_i = 1)$ simple

BSC Approximation

Under the independence assumption,

$$P(|\boldsymbol{e}| = w) \approx {n \choose w} \rho^w (1 - \rho)^{n-w}.$$

A First Look at the Error

P(|e| = w) difficult for $e = u_1r_2 + u_2r_1 + r_3$ $\rho = P(e_i = 1)$ simple

BSC Approximation

Under the independence assumption,

$$P(|\boldsymbol{e}| = w) \approx {\binom{n}{w}} \rho^w (1-\rho)^{n-w}.$$

Refined Approximation
 Heuristic for weight after multiplication

A First Look at the Error

P(|e| = w) difficult for $e = u_1r_2 + u_2r_1 + r_3$ $\rho = P(e_i = 1)$ simple

BSC Approximation

Under the independence assumption,

$$P(|\boldsymbol{e}| = w) \approx {\binom{n}{w}} \rho^w (1-\rho)^{n-w}.$$

Refined Approximation
 Heuristic for weight after multiplication

<∄ > < ≣ > < ≣ >

Beyond the BSC

Sebastian Bitzer (TUM)

< 🗗 > < 🗄 > < 🖷 >

Beyond the BSC

Beyond the BSC

Beyond the BSC

<∄ > < ≣ > < ≣ >

How Much Can Be Gained?

Loeliger, H.-A. (1994).On the basic averaging arguments for linear codes. *Comm. and Crypto.*

$$\mathcal{E} = \{ e \mid e = u_1 r_2 + u_2 r_1 + r_3 \}$$
$$\Delta \mathcal{E} = \{ e - e' \mid e, e' \in \mathcal{E} \}$$

< 🗗 > < 🗄 > < 🖹 >

How Much Can Be Gained?

Loeliger, H.-A. (1994).On the basic averaging arguments for linear codes. *Comm. and Crypto.*

$$\mathcal{E} = \{ e \mid e = u_1 r_2 + u_2 r_1 + r_3 \}$$
$$\Delta \mathcal{E} = \{ e - e' \mid e, e' \in \mathcal{E} \}$$

 $\bigcirc GV\text{-like Bound} \\ n \leq k + \log_q(|\Delta \mathcal{E}|)$

< 同 > < 三 > < 三 >

Loeliger, H.-A. (1994).On the basic averaging arguments for linear codes. *Comm. and Crypto.*

$$\mathcal{E} = \{ e \mid e = u_1 r_2 + u_2 r_1 + r_3 \}$$
$$\Delta \mathcal{E} = \{ e - e' \mid e, e' \in \mathcal{E} \}$$

GV-like Bound $n \leq k + \log_q(|\Delta \mathcal{E}|)$ Here: $|\Delta \mathcal{E}| \leq w_r^3 {n \choose 2w_r}^3 {n \choose w_u}^2$

글 > < 글

< 47 ▶ <

Loeliger, H.-A. (1994). On the basic averaging arguments for linear codes. *Comm. and Crypto.*

$$\mathcal{E} = \{ e \mid e = u_1 r_2 + u_2 r_1 + r_3 \}$$
$$\Delta \mathcal{E} = \{ e - e' \mid e, e' \in \mathcal{E} \}$$

	length	error model	decoder
HQC	17669	BSC	multistage

A
 A
 A
 A
 A
 A

Loeliger, H.-A. (1994). On the basic averaging arguments for linear codes. *Comm. and Crypto.*

$$\mathcal{E} = \{ \boldsymbol{e} \mid \boldsymbol{e} = \boldsymbol{u}_1 \boldsymbol{r}_2 + \boldsymbol{u}_2 \boldsymbol{r}_1 + \boldsymbol{r}_3 \}$$
$$\Delta \mathcal{E} = \{ \boldsymbol{e} - \boldsymbol{e}' \mid \boldsymbol{e}, \boldsymbol{e}' \in \mathcal{E} \}$$

GV-like Bound $n \leq k + \log_q(|\Delta \mathcal{E}|)$ Here: $|\Delta \mathcal{E}| \leq w_r^3 {n \choose 2w_r}^3 {n \choose w_u}^2$

	length	error model	decoder
HQC	17669	BSC	multistage
SPB	≥ 13438	BSC	ML

Loeliger, H.-A. (1994). On the basic averaging arguments for linear codes. *Comm. and Crypto.*

$$\mathcal{E} = \{ e \mid e = u_1 r_2 + u_2 r_1 + r_3 \}$$
$$\Delta \mathcal{E} = \{ e - e' \mid e, e' \in \mathcal{E} \}$$

	length	error model	decoder
HQC	17669	BSC	multistage
SPB	≥ 13438	BSC	ML
GVB	≤ 3800	structured	???

▲ 伊 ト ▲ 三 ト ▲ 三 ト

Loeliger, H.-A. (1994). On the basic averaging arguments for linear codes. *Comm. and Crypto.*

$$\mathcal{E} = \{ e \mid e = u_1 r_2 + u_2 r_1 + r_3 \}$$
$$\Delta \mathcal{E} = \{ e - e' \mid e, e' \in \mathcal{E} \}$$

	length	error model	decoder
HQC	17669	BSC	multistage
SPB	≥ 13438	BSC	ML
GVB	≤ 3800	structured	???

- O DFR, no heuristics
- etter parameters
- () explicit code needed
- ① efficient decoder needed
Conclusion

TUT

물 네 물 네

< 77 ▶ <

Non-random codes in code-based cryptography:

- OMELIECE has strong code requirements
- HQC allows public decoder
- Error structure of HQC

Conclusion

Non-random codes in code-based cryptography:

- OMELIECE has strong code requirements
- HQC allows public decoder
- Error structure of HQC

Research questions:

- ? Are Goppa codes secure?
- ⑦ Efficient codes for HQC?
- ⑦ HQC in Hamming and rank metric sum-rank HQC?
- ⑦ More lattice-based inspiration?

< 日本 > < 三 > < 三)

пп

Conclusion

Non-random codes in code-based cryptography:

- OMELIECE has strong code requirements
- HQC allows public decoder
- Error structure of HQC

Research questions:

- ? Are Goppa codes secure?
- ⑦ Efficient codes for HQC?
- ⑦ HQC in Hamming and rank metric sum-rank HQC?
- ⑦ More lattice-based inspiration?

my website

Thank you! Questions?

< 日本 > < 三 > < 三)

пп